Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.309
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731917

Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.


Brain , Proton Magnetic Resonance Spectroscopy , Animals , Swine , Proton Magnetic Resonance Spectroscopy/methods , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Vitis/chemistry , Phantoms, Imaging
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732066

We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 µg GAE/µL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.


Antioxidants , Cell Survival , Fruit , Plant Extracts , Humans , Caco-2 Cells , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Fragaria/chemistry , Polyphenols/pharmacology , Vitis/chemistry
3.
Food Res Int ; 186: 114332, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729715

The protein instability with haze formation represents one of the main faults occurring in white and rosé wines. Among the various solutions industrially proposed, aspergillopepsin I (AP-I) supplementation coupled with must heating (60-75 °C) has been recently approved by OIV and the European Commission for ensuring protein stability of wines. This study investigates the impact of AP-I either applied independently or in combination with flash pasteurization on the chemical composition of grape must and wines derived from Sauvignon Blanc and Gewürztraminer. The efficacy on protein stability of a complete treatment combining heat (70 °C) and AP-I (HP) was confirmed through heat test and bentonite requirement, although no differences were observed between must heating and HP treatments. However, high-performance liquid chromatography analysis of unstable pathogenesis-related proteins revealed that AP-I supplementation reduced chitinases and thaumatin-like proteins compared to the non-enzymed samples, with and without must heating. Amino acid increase was reported only in HP musts, particularly in Sauvignon Blanc. The concentration of yeast-derived aroma compounds in Gewürztraminer wines was increased by must heating; compared to controls, flash pasteurization rose the overall acetate esters content of 85 % and HP of 43 %, mostly due to isoamyl acetate. However, heat treatments -with or without AP-I- reduced terpenes up to 68 %. Despite the different aroma profiles, no differences were observed for any descriptor for both varieties in wine tasting, and only a slight decrease trend was observed for the floral intensity and the typicality descriptors in heated wines.


Hot Temperature , Odorants , Pasteurization , Vitis , Wine , Wine/analysis , Pasteurization/methods , Vitis/chemistry , Odorants/analysis , Food Handling/methods , Protein Stability
4.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731406

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Anthocyanins , Chitosan , Phenols , Vitis , Volatile Organic Compounds , Wine , Anthocyanins/analysis , Chitosan/chemistry , Wine/analysis , Vitis/chemistry , Phenols/analysis , Volatile Organic Compounds/analysis , Italy , Chromatography, High Pressure Liquid
5.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 349-370, mayo 2024. ilus
Article En | LILACS | ID: biblio-1538077

Age-related neurological disorders (ANDs), including neurodegenerative diseases, are complex illnesses with an increasing risk with advancing years. The central nervous system's neuropathological conditions, including oxidative stress, neuroinflammation, and protein misfolding, are what define ANDs. Due to the rise in age-dependent prevalence, efforts have been made to combat ANDs. Vitis viniferahas a long history of usageto treat a variety of illness symptoms. Because multiple ligand sites may be targeted, Vitis viniferacomponents can be employed to treat ANDs. This is demonstrated by the link between the structure and action of these compounds. This review demonstrates that Vitis viniferaand its constituents, including flavonoids, phenolic compounds, stilbenoidsandaromatic acids, are effective at reducing the neurological symptoms and pathological conditions of ANDs. This is done by acting as an antioxidant and anti-inflammatory. The active Vitis vinifera ingredients have therapeutic effects on ANDs, as this review explains.


Las enfermedades neurológicas asociadas a la edad (AND, por su sigla en inglés) incluyendo las enfermedades neurodegenerativas, son enfermedades complejas con un riesgo creciente con la edad. Las condiciones neuropatológicas del sistema nervioso central, que incluyen el estrés oxidativo, la neuro inflamación, y el plegado erróneo de proteínas, son lo que define las AND. Debido al aumento en la prevalencia dependiente de la edad, se han hecho esfuerzos para combatir las AND. Vitis vinifera tiene una larga historia de uso para el tratamiento de síntomas. Puesto que puede hacer objetivo a muchos sitios ligando, los componentes de Vitis viniferase pueden utilizar para tratar AND. Esto se demuestra por el vínculo entre la estructura y la acción de estos compuestos. Esta revisión demuestra que la Vitis viniferay sus constituyentes, incluídos los flavonoides, componentes fenólicos, estilbenoides, y ácidos aromáticos, son efectivos para reducir los síntomas neurológicos y las condiciones patológicas de AND. Esto se produce por su acción como antioxidante y antiinflamatorio. Los ingredientes activos de Vitis vinifera tienen efectos terapéuticos en AND, y esta revisión lo explica.


Plant Extracts/therapeutic use , Vitis/chemistry , Nervous System Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use
6.
Food Chem ; 449: 139228, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604033

Cabernet Sauvignon grape juice and wine underwent in vitro digestion, resulting in a reduction of most phenolic compounds (10%-100% decline), notably impacting anthocyanins (82%-100% decline) due to pH variations. However, specific phenolics, including p-hydroxybenzoic, protocatechuic, vanillic, p-coumaric, gallic and syringic acids, and coumarin esculetin, increased in concentration (10%-120%). Grape juice and wine samples showed comparable polyphenolic profile during all phases of digestion. Antioxidant activity persisted, and inhibition of angiotensin-I converting enzyme was improved after the digestion process, likely because of increased concentrations of listed phenolic acids and esculetin. Digested grape juice displayed comparable or superior bioactivity to red wine, indicating it as a promising source of accessible grape polyphenols for a broader audience. Nevertheless, Caco-2 cell model metabolization experiments revealed that only 3 of 42 analyzed compounds passed to the basolateral compartment, emphasizing the significant impact of digestion on polyphenol bioactivity, suggesting potential yet unmeasurable and overlooked implications for human health.


Digestion , Fruit and Vegetable Juices , Phenols , Vitis , Wine , Wine/analysis , Humans , Vitis/chemistry , Vitis/metabolism , Caco-2 Cells , Fruit and Vegetable Juices/analysis , Phenols/metabolism , Phenols/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Polyphenols/metabolism , Polyphenols/chemistry , Models, Biological
7.
Food Chem ; 449: 139193, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604037

The desirable wine aroma compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) are released during fermentation from non-volatile precursors present in the grapes. This work explores the relative contribution of four precursors (E-2-hexenal, 3-S-glutathionylhexan-1-ol, 3-S-glutathionylhexanal, and 3-S-cysteinylhexan-1-ol) to 3SH and 3SHA. Through the use of isotopically labelled analogues of these precursors in defined fermentation media, new insights into the role of each precursor have been identified. E-2-Hexenal was shown to contribute negligible amounts of thiols, while 3-S-glutathionylhexan-1-ol was the main precursor of both 3SH and 3SHA. The glutathionylated precursors were both converted to 3SHA more efficiently than 3-S-cysteinylhexan-1-ol. Interestingly, 3-S-glutathionylhexanal generated 3SHA without detectable concentrations of 3SH, suggesting possible differences in the way this precursor is metabolised compared to 3-S-glutathionylhexan-1-ol and 3-S-cysteinylhexan-1-ol. We also provide the first evidence for chemical conversion of 3-S-glutathionylhexan-1-ol to 3-S-(γ-glutamylcysteinyl)-hexan-1-ol in an oenological system.


Fermentation , Vitis , Wine , Wine/analysis , Vitis/chemistry , Vitis/metabolism , Acetates/metabolism , Acetates/chemistry , Aldehydes/metabolism , Aldehydes/chemistry , Odorants/analysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673798

The present work aims to study the possibilities of developing silver nanoparticles using natural extracts of grape pomace wastes originating from the native variety of Feteasca Neagra 6 Șt. This study focused on investigating the influence of grape pomace extract obtained by two different extraction methods (classical temperature extraction and microwave-assisted extraction) in the phytosynthesis process of metal nanoparticles. The total phenolic content of the extracts was assessed using the spectrophotometric method with the Folin-Ciocâlteu reagent, while the identification and quantification of specific components were conducted through high-performance liquid chromatography with a diode array detector (HPLC-DAD). The obtained nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), along with assessing their antioxidant and antimicrobial properties against Gram-positive bacteria. The data collected from the experiments indicated that the nanoparticles were formed in a relatively short period of time (96 h) and, for the experimental variant involving the use of a 1:1 ratio (v/v, grape pomace extract: silver nitrate) for the nanoparticle phytosynthesis, the smallest crystallite sizes (from X-ray diffraction-4.58 nm and 5.14 nm) as well as spherical or semispherical nanoparticles with the lowest average diameters were obtained (19.99-23 nm, from TEM analysis). The phytosynthesis process was shown to enhance the antioxidant properties (determined using the DPPH assay) and the antimicrobial potential (tested against Gram-positive strains) of the nanoparticles, as evidenced by comparing their properties with those of the parent extracts; at the same time, the nanoparticles exhibited a selectivity in action, being active against the Staphylococcus aureus strain while presenting no antimicrobial potential against the Enterococcus faecalis strain.


Antioxidants , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Silver , Vitis , Vitis/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Green Chemistry Technology/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , X-Ray Diffraction
9.
J Agric Food Chem ; 72(17): 9581-9586, 2024 May 01.
Article En | MEDLINE | ID: mdl-38647217

The frequency of wildfires has significantly increased in recent years, posing concerns for many grapegrowers and winemakers. Exposure of grapes to smoke can result in wines with notable smoky notes, which in severe cases are described as "smoke tainted". However, smoky aromas in wine are not a priori quality defects but may be considered desirable in some styles of wines, as also widely found and appreciated in many spirits. In this perspective, we summarize recent research on sources and assessment of smoky sensory attributes in wine and provide an outlook on opportunities for managing excessive smoky characters.


Odorants , Smoke , Taste , Vitis , Wine , Wine/analysis , Vitis/chemistry , Humans , Odorants/analysis , Smoke/analysis , Flavoring Agents/chemistry , Fruit/chemistry , Wildfires
10.
J Agric Food Chem ; 72(17): 9621-9636, 2024 May 01.
Article En | MEDLINE | ID: mdl-38648422

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.


Fusarium , Plant Extracts , Tandem Mass Spectrometry , Vitis , Vitis/chemistry , Vitis/microbiology , Fusarium/drug effects , Fusarium/growth & development , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Plant Diseases/microbiology , Waste Products/analysis
11.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Article En | MEDLINE | ID: mdl-38666490

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Metabolic Engineering , Saccharomyces cerevisiae , Vitis , Xanthophylls , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Xanthophylls/metabolism , Vitis/metabolism , Vitis/microbiology , Vitis/chemistry , Oxidation-Reduction , Zeaxanthins/metabolism , Zeaxanthins/biosynthesis , NADP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124300, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38640626

Owing to good flexibility, prominent mechanical properties, three-dimensional (3D) nanofibrous structure and low background interference, sustainable bacterial nanocellulose (BNC) is a highly attractive matrix material for surface-enhanced Raman scattering (SERS) sensor. Herein, a highly sensitive, flexible and scalable silver nanorod-decorated BNC (AgNRs@BNC) SERS sensor is developed by a simple vacuum-assisted filtration. The AgNRs were firmly locked in the 3D nanofibrous network of cellulose nanofibers upon vacuum drying process, resulting in the formation of 3D SERS hotspots with a depth of more than 10 µm on the sensor. With 4-aminothiophenol (4-ATP) as a target molecule, a lowest distinguishable level of 10-12 M and a high enhancement factor of 1.1 × 109 were realized by the optimal AgNRs1.5@BNC SERS sensor. Moreover, the AgNRs@BNC SERS sensor exhibits high detectable level of 10-9 M for thiram molecules by integrating with a portable Raman spectrometer. Besides, toxic thiram residues on grape surface could be directly on-site identified by the combination of AgNRs@BNC SERS sensors and a portable Raman spectrometer through a feasible press-and-peel method. The flexible AgNRs@BNC SERS sensor cooperated with portable Raman system demonstrates great potential for on-site detection of pesticide residues on irregular food surfaces.


Cellulose , Nanotubes , Pesticide Residues , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Silver/chemistry , Cellulose/chemistry , Nanotubes/chemistry , Pesticide Residues/analysis , Thiram/analysis , Aniline Compounds/chemistry , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/analysis , Bacteria , Vitis/chemistry , Limit of Detection
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124326, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38669978

Based on the fact that not all chemical substances possess good Raman signals, this article focuses on the Raman silent region signals of pesticides with cyano group. Under the optimized conditions of methanol-water (1:1, v/v) as the solvent, irradiation at 302 nm light source for 20 min, and the use of 0.5 mol/L KI as the aggregating agent, Surface-enhanced Raman spectroscopy (SERS) method for azoxystrobin detection was developed by the Raman silent region signal of 2230 cm-1, and verified by detecting the spiked grapes with different concentrations of azoxystrobin. Other four pesticides with cyano group also could be identified at the peak of 2180 cm-1, 2205 cm-1, 2125 cm-1, and 2130 cm-1 for acetamiprid, phoxim, thiacloprid and cymoxanil, respectively. When azoxystrobin or acetamiprid was mixed respectively with chlorpyrifos without cyano group, their SERS signals in the Raman silent region of chlorpyrifos were not interfered, while mixed with cymoxanil in different ratios (1:4, 1:1 and 4:1), respectively, each two pesticides with cyano group could be distinguished by the changes in the Raman silent region. In further, four pesticides with or without cyano group were mixed together in 1:1:1:1 (acetamiprid, cymoxanil, azoxystrobin chlorpyrifos), and each pesticide still could be identified even at 0.5 mg/L. The results showed that the SERS method combined with UV irradiation may provide a new way to monitor the pesticides with C≡N performance in the Raman silent region without interference from the food matrix.


Pesticides , Spectrum Analysis, Raman , Strobilurins , Spectrum Analysis, Raman/methods , Pesticides/analysis , Strobilurins/analysis , Pyrimidines/analysis , Pyrimidines/chemistry , Vitis/chemistry , Methacrylates/chemistry , Methacrylates/analysis , Neonicotinoids/analysis
14.
Front Biosci (Elite Ed) ; 16(1): 10, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38538529

BACKGROUND: Tostado is a traditional sweet wine from the Designations of Origins (DOs) of Ribeiro and Valdeorras in Galicia (NW Spain). The harvested grapes are air-dried and pressed to increase the concentrations of sugars, acids, and flavour compounds. Therefore, knowledge of the yeasts involved in fermentation under these conditions is essential to guarantee the quality and uniqueness of the valuable, distinctive, and expensive Tostado wines. METHODS: Saccharomyces and non-Saccharomyces yeasts were identified using Wallerstein Laboratory (WL) Nutrient Agar and lysine plating, followed by polymerase chain reaction (PCR) amplification, enzymatic digestion, and sequencing. Saccharomyces cerevisiae isolates were further characterised at the strain level using mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP). Statistical analyses were also performed, including different diversity indices, Similarity Percentage (SIMPER) analysis, principal component analysis (PCA), neighbor-joining clustering, parsimony-phylogram, and network plot. In addition, the total acidity, volatile acidity, reducing sugars, and alcoholic strength by volume of the Tostado wines were analysed. RESULTS: A wide diversity of autochthonous yeasts was found, which were predominantly species of oenological relevance, such as Lachancea thermotolerans, Starmerella bacillaris, Hanseniaspora uvarum, Debaryomyces hansenii, Torulaspora delbrueckii, Pichia spp., and Saccharomyces cerevisiae from the must and paste stages of Tostado wine. In addition, 19 different S. cerevisiae strains were identified. This high yeast diversity, which changed from the early stages of fermentation, could contribute to the distinctive characteristics observed in Tostado wine. CONCLUSIONS: Characteristic and differentiating chemical and microbiological profiles were found as early as the pre-fermentation stages, which adds value to these special wines that have rarely been studied.


Vitis , Wine , Wine/analysis , Wine/microbiology , Saccharomyces cerevisiae/genetics , Spain , Vitis/chemistry , Vitis/microbiology , Sugars/analysis
15.
Ultrason Sonochem ; 105: 106856, 2024 May.
Article En | MEDLINE | ID: mdl-38554530

The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).


Antioxidants , Liposomes , Proanthocyanidins , Proanthocyanidins/isolation & purification , Proanthocyanidins/chemistry , Liposomes/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Ultrasonic Waves , Vitis/chemistry , Grape Seed Extract/chemistry , Chemical Fractionation/methods , Particle Size , Temperature , Seeds/chemistry
16.
Microb Pathog ; 190: 106613, 2024 May.
Article En | MEDLINE | ID: mdl-38484919

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Vitis , Silver/pharmacology , Silver/chemistry , Silver/metabolism , Metal Nanoparticles/chemistry , Animals , Humans , Vitis/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Particle Size , Green Chemistry Technology , Gram-Negative Bacteria/drug effects , Bombyx , Biofilms/drug effects , Cell Line , Cell Survival/drug effects , Keratinocytes/drug effects , Larva/drug effects , Yeasts/drug effects
17.
Int J Biol Macromol ; 265(Pt 1): 130934, 2024 Apr.
Article En | MEDLINE | ID: mdl-38493824

Extraction of anthocyanins from grape pomace, is a way of valuing these abundant by-products with low added value. Its integration into films may allow it to be used in bioactive packaging, which creates new color and solubility properties for food and smart food packaging which tracks the freshness of fish. Films of arrowroot starch added with different concentrations of grape pomace extract (GPE) were flexible to handle, reddish and presented a high content of anthocyanins. The water vapor permeability increased by 17 %, while the tensile strength of arrowroot starch film decreased by 79 % with the addition of 40 % GPE. The addition of GPE increased the solubility of the starch film in aqueous and lipid food simulants by 121 and 119 %. The GPE pigment preferentially migrated to the aqueous simulant due to the hydrophilic nature of anthocyanins and starch. The GPE film showed distinguishable color changes in different pH buffer solutions from pink at pH 2 to light blue at pH 7 and slightly yellowish green at pH 10. When the composite films were monitored for fish meat freshness, the change in color of the film from reddish pink to slightly green after 96 h of storage at 25 °C was evident.


Marantaceae , Vitis , Animals , Anthocyanins/chemistry , Vitis/chemistry , Hydrogen-Ion Concentration , Starch/chemistry , Meat , Food Packaging , Plant Extracts/chemistry
18.
Int J Biol Macromol ; 266(Pt 1): 131215, 2024 May.
Article En | MEDLINE | ID: mdl-38552679

Realizing adhesion between wet materials remains challenging because of the interfacial water. Current strategies depend on complicated surface modifications, resulting in limited functions. Herein, a facile strategy based on the powder of grape seed protein and tannic acid (GSP-TA) was reported to endow various non-adhesive hydrogels adhesion without chemical modifications for both hydrogels and adherents. The GSP-TA powder has the capability to absorb interfacial water, form an adhesive layer on the hydrogel surface, diffusion into the underneath hydrogel matrix, and establish the initial adhesion within 5 s. By forming multiple non-covalent interactions between powders and substrates, the GSP-TA powder served as an efficient surface treating agent, enabling robust adhesion to solid substrates (wood, cardboard, glass, iron, and rubber) and wet tissues (pigskin, muscle, liver and heart). The adhesive strength for wood, cardboard, glass, iron, and rubber was 145.92 ± 5.93, 123.93 ± 15.98, 66.24 ± 7.67, 98.22 ± 4.13, and 80.83 ± 7.48 kPa, respectively. Because of reversible interactions, the adhesion was also repeatable. Due to the merits of grape seed protein and plant polyphenol, it could be completely degraded within 11 days. Bearing several merits, this strategy has promising applications in wound patches, tissue repair, and sensors.


Hydrogels , Polyphenols , Powders , Tannins , Vitis , Tannins/chemistry , Hydrogels/chemistry , Vitis/chemistry , Adhesives/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Animals , Adhesiveness
19.
Food Chem ; 445: 138745, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38364500

In this study, acidity was regulated with the addition of exogenous tartaric acid and citric acid before bottling. The effect of exogenous organic acids on chemical compositions and sensory attributes of fortified sweet wines from dehydrated grapes were investigated. The results indicated that exogenous organic acids promoted the conversion of monomeric anthocyanins to copigmented anthocyanins in wines. Specifically, the combination of malvidin-3-O-glucoside and flavanols (catechin and epicatechin) was facilitated to form copigmented anthocyanins. Sensory analysis suggested that exogenous organic acids improved the balance of sugar and acidity and benefited the harmony in wines on the taste. Wines with a residual sugar and titratable acidity ratio of about 11:1 exhibited the more harmonious taste. In addition, it was also observed changes in the aroma profile related to volatile compounds, namely, more intense fruity aroma in wines with the addition of organic acids.


Vitis , Volatile Organic Compounds , Wine , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Taste , Phenols/analysis , Odorants/analysis , Carbohydrates/analysis , Sugars/analysis , Volatile Organic Compounds/analysis
20.
Food Res Int ; 180: 114072, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395560

Understanding fungal community dynamics during fermentation is important for assessing their influence on wine's phenolic content. The present study represents the first effort to explore the correlation between the autochthonous mycobiota of Marastina grapes collected from Dalmatian winegrowing sub-regions in Croatia and the phenolic composition, as well as the physicochemical parameters of wines produced through spontaneous fermentation. The metataxonomic approach revealed Metschnikowia pulcherrima, Metschnikowia fructicola and Hanseniaspora uvarum as the core mycobiota detected at the initial phase of fermentation. By contrast, Saccharomyces cerevisiae took over the dominance starting from the middle stage of fermentation. The wine's phenolic compounds were revealed by high-performance liquid chromatography, with tyrosol being the most abundant. Rhodotorula babjevae and Botrytis cinerea showed a positive correlation with p-hydroxybenzoic acid, gentisic acid, caffeic acid and cinnamic acid, while demonstrating a negative correlation with protocatechuic acid and chlorogenic acid. Heterophoma novae-verbascicola exhibited the opposite behaviour regarding the same phenolic compounds. The concentration of lactic acid was positively correlated with B. cinerea and negatively correlated with Het. novae-verbascicola. These findings serve as a foundation for in-depth investigations into the role of autochthonous grape mycobiota in phenolic transformation during spontaneous fermentation, potentially leading to the production of high-quality wines with unique terroir characteristics. Future studies should aim to explore the specific role played by individual yeast isolates in the formation of phenolic compounds.


Vitis , Wine , Wine/analysis , Fermentation , Vitis/chemistry , Saccharomyces cerevisiae , Phenols/analysis
...